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The transport of momentum and a passive scalar (temperature) in a three-dimensional
transitional wake of a heated square cylinder has been carried out through direct
numerical simulations using the lattice Boltzmann method at a Reynolds number
Rd =200 (d is the cylinder diameter) and a Prandlt number of 0.7. The simulations
shows that while momentum and heat are transported by vortical structures, heat is in
general more effectively transported than momentum. It is argued that the nature of
the structural flow is responsible for the longitudinal heat flux uθ being larger than the
lateral one vθ in the wake region extending up to 45d . It was shown that a gradient
transport model could, to a first-order approximation, be used to model uv but would
be less accurate for modelling vθ . Also the Reynolds analogy between momentum and
heat transports is not verified in this flow. The fluctuating temperature field presents
thermal structures similar to the velocity structures with, however, a different spatial
organization. In addition the analogy between fluctuating turbulent kinetic energy
and the temperature variance is relatively well satisfied throughout the wake flow.

1. Introduction
Antonia & Mi (1993) presented analytical solutions for the vorticity and

temperature fields in an infinitely long axisymmetric line vortex diffusing into the
surrounding (ambient temperature) fluid (here and in the rest of the paper temperature
is considered as a passive scalar with no dynamic effect on the fluid flow). They
assumed that both the temperature and vorticity follow the same transport equation:

∂ξ

∂t
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Aξ
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∂

∂r
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∂ξ
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)
, (1.1)

where ξ represents either the vorticity or temperature, Aξ is a constant (equal to either
the fluid kinematic viscosity or the thermal diffusivity) and r is the radial distance
from the centre of the vortex. They obtained the following distribution form for the
two quantities:

ξ =
βξ

t
e−r2/αξ t , (1.2)

† Email address for correspondence: lyazid.djenidi@newcastle.edu.au



110 L. Djenidi and R. A. Antonia

where βξ and αξ (= 4Aξ ) are constant; the former is determined at time t = 0. Earlier
experimental verification of (1.2) for the vorticity was observed by Okude & Matsui
(1987a) using both hot-wire and visualization techniques and by Green & Gerrard
(1991) using optical interferometry. Also using hot wires, Okude & Matsui (1987b)
measured the vorticity distribution in a cylinder wake (Rd = 140) and found it to
be in reasonable agreement with (1.2). Mi & Antonia (1994), using also hot-wire
measurements in a wake cylinder (Rd =98), verified (1.2) for the vorticity. In addition,
by carrying out cold-wire measurements for the same flow conditions but with a
slightly heated cylinder, these latter authors provided an experimental verification
of (1.2) for the temperature, confirming that temperature and vorticity behaved in
similar fashion within a two-dimensional isolated vortex (see also Ezersky et al. 2000).
From a practical point of view, this is very useful since temperature measurements
can be made more reliably than vorticity measurements. Furthermore, verification of
(1.2) for both vorticity and temperature is useful for the purpose of modelling thermal
laminar vortices and using temperature as a relatively accurate marker of the vortices.

Godard (2001), Paranthoën et al. (2004) and Godard et al. (2005) studied the
diffusion of temperature in a periodic laminar wake of a circular cylinder at a
Reynolds number of 65. They introduced a heated line source in the near-wake and
measured the velocity and temperature using laser Doppler anemometry (LDA) and
cold-wire thermometry. They showed that the velocity field in the wake is strongly
related to the geometric structure of vortices while the temperature field is controlled
both by the time scale of rotation of the vortices and the location of the heated
fluid within the vortex street. Furthermore, they observed that in the central part
of the thermal plume, the transverse heat flux and transverse mean temperature
gradient had always the same sign, which indicated that a gradient transport model
(GTM) for heat was not appropriate to model heat transfer in this particular
flow.

In the present paper, we investigate the transport of momentum and heat in a three-
dimensional transitional wake of a slightly heated square cylinder. The motivation
of the study stems in part from the fact that, as pointed out above, this aspect has
to date received little attention. It is important to document how momentum and
heat (or any passive scalar) are transported in transitional flows and in particular
to determine the role of the velocity field in the transport of heat. Another reason
for this work is related to the anomalous behaviour of the small-scale temperature
field in turbulent flows (Sreenivasan 1996; Mydlarski & Warhaft 1998; Warhaft 2000;
Watanabe & Gotoh 2004). This behaviour is associated with the ramp-cliff structures,
which results from the converging and diverging separatrices and saddle points formed
by large-scale velocity structures (Antonia et al. 1986; Matsumura & Antonia 1993).
Watanabe & Gotoh (2004) showed that ramp-cliff structures exist whether or not a
mean temperature gradient is present. Quite interestingly, Godard (2001) presented
temperature signals, measured in a cylinder wake at Rd = 65 (a heat line source
was used to generate the passive scalar), which exhibited features similar to those
associated with ramp-cliff signals. Since large-scale structures, through the ramp-cliff
structures, play a significant role in the context of the small-scale anisotropy of the
scalar field, the study of the temperature field in a three-dimensional transitional
flow should provide useful insight in the general problem of scalar mixing. The
three-dimensional transitional wake is interesting as it offers the possibility to follow
the temperature behaviour from a (pseudo-)two-dimensional laminar environment to
a three-dimensional pseudo-turbulent one. This makes it possible to investigate the
effect of the velocity on the temperature field at different stages of the wake.
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2. Numerical procedure
2.1. Lattice Boltzmann method

A direct numerical simulation (DNS) is carried out using the lattice Boltzmann
method (LBM). Rather than solving the governing fluid equations (Navier–Stokes
equations), the LBM solves the Boltzmann equation on a lattice. The basic idea of the
LBM is to construct a simplified kinetic model that incorporates the essential physics
of microscopic average properties, which obey the desired (macroscopic) Navier–
Stokes equations (Frisch, Hasslacher & Pomeau 1986). With a sufficient amount of
symmetry of the lattice, the LBM implicitly solves these latter equations with second-
order accuracy. For the present calculations, each computational node consists of a
three-dimensional lattice composed of 18 moving particles and a rest particle (lattice
model D3Q19, for a developed account of LBM and its applications see Benzi,
Succi & Vergassola 1992; Chen & Doolen 1998; Succi 2001; Djenidi 2006).

The standard lattice Boltzmann equation (LBE) with the Bhatnagar–Gross–Krook
(BGK) approximation governing the time and space variations of the single-particle
distribution fi(x, t) at the lattice site x is

fi(x + ei�t, t + �t) − fi(x, t) = −1

τ
(fi(x, t) − f

eq
i (x, t)), i = 0, 1, . . . , 18, (2.1)

where τ is the relaxation time, �t the time step, ei (= �x/�t) is the particle velocity
in the i -direction and f

eq
i is the equilibrium single-particle distribution:

f
eq
i = ρωi

(
1 + 3(ei · u) +

9

2
(ei · u)2 − 3

2
u2

)
, (2.2)

where ρ( =
∑

i fi) is the fluid density, u (ρu =
∑

i fiei) is the local fluid velocity
vector and ωi are the corresponding weights (ωi = 1/3 for i = 0, ωi =1/18 for i = 1−6
and ωi = 1/36 for i = 7 − 18; i = 0 corresponds to the rest particle in the centre of
the cubic lattice, i = 1, . . . , 6 correspond to the particles on the axis aligned with x, y

and z, and i = 7, . . . , 18 are related to the particles on the diagonal directions.)
The motivation for the choice of the LBM over the classical resolution of the

Navier–Stokes equations has been presented in Djenidi (2006) and Djenidi &
Moghtaderi (2006). We briefly summarize the reasons here: (i) extreme ease of
implementing solid surfaces, (ii) no need for solving the Poisson equation for the
pressure and (iii) ease of parallelizing the computations, which follows in part from
(ii) and the fact the collision step is local in nature.

2.2. Thermal lattice Boltzmann method

A passive scalar approach (Massaioli, Benzi & Succi 1993; Yuan & Schaefer 2006)
is implemented to compute the temperature field. In this approach the temperature
satisfies the passive-scalar equation

∂T

∂t
+ u · ∇T = ∇ · (α∇T ) + Ψ , (2.3)

where T is the temperature, Ψ is a source term (set to zero here) and α is the thermal
diffusivity. Equation (2.3) can be solved in the framework of LBM where (2.1) and
(2.2) are used with τ replaced by τT (time relaxation for the temperature) and fi(x, t)
is replaced by f T

i (x, t), the temperature density distribution. The temperature at a
computational node is calculated as T =

∑
i f

T
i . The temperature relaxation time τT
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is related to τ through the Prandtl number,

Pr =
ν

α
=

2τ − 1

2τT − 1
, (2.4)

where ν is the kinematic viscosity of the fluid.

2.3. Computational domain and boundary conditions

The three-dimensional computational domain, which includes the square cylinder, is
Cartesian and has 800 × 110 × 110 mesh points (or 80d × 11d × 11d , d is the diameter
of the square cylinder represented with 10 mesh points). The mesh increments in the
three directions are equal (�x = �y = �z = �= 0.1d = 1). The cylinder is placed at
a distance of 9d after the inlet where a constant velocity U0 is imposed. Periodic
conditions are applied on the lateral sides of the computational domain and a
convective boundary condition is imposed at the outlet. A no-slip condition is applied
on the cylinder surface. This condition is easily implemented in LBM through the
so-called bounceback scheme (Succi 2001). The surface of the cylinder is kept at a
constant temperature Tw =3 (lattice unit), and the incoming fluid is at a temperature
T0 = 1. The Reynolds number Rd( = U0d/ν) is 200 and the Prandtl number is 0.7.

The number of mesh points used to represent the cylinder diameter is selected for
allowing computations to be done over a relatively long distance behind the cylinder.
The number is sufficient to capture the features of the transitional flow accurately. For
example, the computed Strouhal number (St = f d/U0, f is the shedding frequency)
was about 0.127, a value close to those obtained in several experimental and numerical
studies (see for examples Durão, Heitor & Pereira 1988; Liou, Chen & Hwang 2002;
Shadaram, Fard & Rostamy 2008).

The computations were carried out on a cluster of 8 dual processors where the
MPI2 protocol was used to perform the parallelization.

3. Results
3.1. Validation of the LBM simulation

Although it is not the scope of the present paper, it is should be mentioned that
the results of the LBM simulation of the three-dimensional natural transition in a
cylinder wake were compared against existing data (Djenidi & Antonia 2008). We
briefly summarize the comparison here. The simulation predicted the early stages
of the transition to turbulence quite accurately. In particular, modes A and B were
captured reliably and were in agreement with published data (Williamson 1996a,
b). After the first instability leading to the von Kármán mode when spanwise
vortices were shed from the cylinder, a transient period developed. During this
period and while the flow remained two-dimensional, a very small spanwise velocity
component w developed gradually and became organized into distinct ‘cells’. This
velocity component resulted from the development of weak longitudinal counter-
rotating vortices along the cylinder. These results were in a very good agreement
with the DNS of Persillon & Braza (1998) and Braza (1999). The flow pattern at
the present Reynolds number (figure 1, Ω is the instantaneous vorticity magnitude)
is consistent with previous studies of transitional flow in a circular cylinder wake
(Williamson 1996a): rows of spanwise vortices linked by ‘braids’ of vorticity. The
spanwise spacing λz between the braid structures were about 1d indicating that the
flow was in the early stages of mode B of the transition regime at this Reynolds
number (Williamson 1996b).
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Figure 1. Isocontour of the instantaneous vorticity, Ω/Ωmax = 0.1.
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Figure 2. Profiles of the longitudinal mean velocity and mean temperature at regular
intervals between x/d = 5 and 65. The arrow indicates the increasing x.

3.2. Mean velocity and temperature fields

Profiles of the longitudinal mean velocity U and mean temperature Θ at several
positions downstream of the cylinder are reported in figure 2 (here and hereafter the
data are normalized by U0, �T0 = Tw − T0 and d). The mean quantities have been
obtained by averaging the instantaneous data over both time and z direction using 120
independent fields. Both U and Θ are symmetric with respect to y/d = 0. While the
mean velocity profiles are consistent with those obtained by Paranthoën et al. (2004)
and Godard et al. (2005), the mean temperature profiles differ significantly. These
authors showed that Θ presented a symmetrical double peaked distributions when
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Figure 3. Profiles of the mean velocity gradient dU/dy and mean temperature gradient
dΘ/dy at regular intervals between x/d = 5 and 65. The arrow indicates the increasing x.

the heat line source was located at y/d =0. When they had the line source off axis, a
single peaked profile was obtained with the peak located off axis. It should be stated
that the present simulations also showed a double peaked distribution when x/d < 1
(not shown here). One would expected that for large x/d the mean temperature profile
from a line source will eventually become a single peaked distribution with the peak
at y/d = 0. This is in fact the trend the data of Paranthoën et al. (2004) indicated.
The difference in the mean temperature profile between the present results and that
of Paranthoën et al. (2004) and Godard et al. (2005) highlights the influence of the
heat source geometry on the transport of heat in the near-wake region.

Although not well discernible in figure 2, the temperature profile does not decay
monotonically. This is better seen in figure 3 showing profiles of dU/dy and dΘ/dy

(d./dy represents the partial derivative with respect to y). While dU/dy decays
monotonically with increasing x, dΘ/dy presents strong variations. For example,
the peak nearer to y/d = 0 decreases before increasing again. Only for x/d > 25
is the decay of dΘ/dy monotonic. This certainly shows that the vorticity has a
strong impact on the temperature field in the near-wake region where the vortical
structures are found to be well defined. This impact is clearly seen in figures 4 and
5 which show isocontours of the magnitude of the instantaneous vorticity Ω and
temperature T . Notice the quasi-perfect correspondance between the contours of Ω

and T , particularly in the region 0 � x/d � 30. It is as if the thermal structures ride on
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Figure 4. Isocontours of the magnitude the instantaneous vorticity (a) and temperature (b)
in the x–y plane at z/d = 0 for 0 � x/d � 30.
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Figure 5. Isocontours of the magnitude of the instantaneous vorticity (a) and temperature
(b) in the x–y plane at z/d = 0 for 30 � x/d � 60.

the back of the vortical structures. Mi & Antonia (1993) and Matsumura & Antonia
(1993) reported a similar correspondance between T and the spanwise component
of the vorticity Ωz in their turbulent heated cylinder wake at a Reynolds number
of about 5400 and 5900, respectively. These results along with the present ones are
reminiscent of the results of Mi & Antonia (1994) and confirm that heat can be an
effective passive marker of vortical structures, at least as long as these structures are
well defined.

3.3. Momentum and heat transport

The velocity and temperature fluctuations have been calculated and their statistics
computed. The distributions of the r.m.s. of the three velocity fluctuation components,
u′, v′ and w′, are shown in figure 6 (the prime denotes the r.m.s.). A number of
observations can be made. As expected the profiles are reasonably symmetrical with
respect to y/d = 0. The scatter found on some of the u′ and w′ profiles reflects the
number of fields used for averaging the data. The component v′ is larger than u′

which is larger than w′, illustrating the strong global anisotropy of the flow, although
this anisotropy decreases as x/d increases. While the v′ distributions present a single
peak at y/d =0, u′ evolves from a double peak to a single peak distribution. The
local maxima of u′ occur at the y/d positions where the magnitude of dU/dy is
maximum. Interestingly, the w′ component shows also a double peak distribution in
the region up to x/d of about 7; a double peak is clearly seen in the distribution at
x/d =5 but is less evident at higher downstream distances. The double peak in the
w′ distributions is also observed at higher Reynolds numbers. The higher values of
v′ over the other two components are related to the alternative feature of the vortex
shedding. More kinetic energy is transferred into the lateral velocity component than
into the longitudinal and spanwise ones. This is observed in the data of Paranthoën
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Figure 6. Profiles of the r.m.s. (a) longitudinal u′, (b) transverse v′ and (c) spanwise w′ velocity
fluctuations at regular intervals between x/d = 5 and 65. The arrow indicates the increasing x.

et al. (2004) and Godard et al. (2005). In cylinder wakes at much higher Reynolds
numbers u′ becomes the dominant component after a relatively shorter downstream
distance than the present case.

The r.m.s. of the temperature fluctuations θ ′ is symmetrical with respect to y/d =0,
but its evolution is not monotonic (figure 7). The distribution is single peaked for
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Figure 7. Profiles the r.m.s. temperature fluctuations θ ′ at regular intervals between x/d = 5
and 65. The arrow indicates the increasing x.

0 < x/d < 20 then becomes double peaked for x/d > 25. Godard et al. (2005) also
observed this evolution. It seems that for x/d > 68 the distribution tends to return
towards a single peaked profile. At high Reynolds numbers the distributions of passive
scalars become more rapidly single peaked (Rehab et al. 2000). Notice that the humps
observed in the distributions at y/d = ±2 for x/d = 15 and y/d = ±3 for x/d =20
correspond to local peaks in the dΘ/dy profiles (figure 3). These humps, also visible
in the mean temperature profile (see figure 2), mark the influence of the von Kármán
vortex street on the temperature field in the early stage of the wake as demonstrated
in figures 4 and 5.

The alternative character of the shedding in the flow is also reflected in the
distributions of the Reynolds shear stress uv and the heat fluxes uθ and vθ shown
in figures 8 and 9 (the overbar denotes an average with respect to time and the z

direction). The profiles of uv and vθ are antisymmetrical with respect to y/d = 0,
while uθ is symmetrical. However, the distributions present strong variations within
the region x/d up to about 30, illustrating the complex features of the flow structure
in this region, where rows of spanwise vortices are linked by braids of vorticity (see
figure 1). For x/d higher than about 50, where the flow is dominated by less coherent
structures, the profiles are similar to those observed at high Reynolds numbers. While
the distributions of uv and vθ are consistent with those observed in Godard et al.
(2005), uθ is markedly different. In the latter study, uθ is negative at practically
all downstream locations of the wake. This contrasts with the present results which
show positive values of uθ on both sides of the centreline. The magnitude of the
positive peaks reduces as x/d increases; at x/d = 65, uθ becomes negative at all y/d .
Matsumura & Antonia (1993) results show that the distributions of uθ for x/d < 10
present similar features to the distributions in figures 8 and 9; at x/d > 20, uθ was
negative at all y/d . They attributed the positive values of uθ to the coherent motion
associated with the vortical structures. The decrease of the magnitude of the peaks in
uθ , as x/d increases, concords with the decay of the coherent structures.

The magnitude of uθ is larger than that of vθ in the region 5 <x/d < 45. This differs
from the data of Matsumura & Antonia (1993) and Godard et al. (2005) which showed
that vθ is always larger than uθ . While at present no definitive explanation is given,
one may argue that both the rolls of spanwise vortices and the vorticity braids would
contribute more to uθ than vθ . In the experiment of Godard et al. (2005) the cylinder



118 L. Djenidi and R. A. Antonia

–5 0 5

–0.015

–0.010

–0.005

0

0.005

0.010

0.015

–5 0 5

–5 0 5

y/d

–0.002

–0.001

0

0.001

0.002

0.003

uv
/U

02
uθ

/U
0
Δ

T
0

_
__

_
_
_
_
_

uθ
/U

0
Δ

T
0

_
__

_
_
_
_

_

–0.004

–0.002

0

0.002

0.004

(a)

(b)

(c)

_
_

_
_

Figure 8. Profiles of the shear stress uv (a) and the heat fluxes uθ and vθ (b, c) at regular
intervals between x/d =5 and 11. The arrow indicates the increasing x.

wake was two-dimensional with the von Kármán vortices well defined and no vorticity
braids. In the study of Matsumura & Antonia (1993), where the Reynolds number
was much higher than here (Rd = 5900), the three-dimensional-transitional region was
short, which might explain why uθ was already smaller than vθ at x/d = 10. It would
be worthwhile to carry out measurements in the same conditions as those of the latter
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authors but at closer downstream distances from the cylinder to determine whether
or not uθ is larger than vθ .

The profiles of uv and vθ show a degree of symmetry to each other, although less
pronounced for x/d > 20. Similar observations can be made in the heated cylinder
wake studies quoted above. This may imply that uv and vθ are approximately
proportional to each other, which would be of interest from a heat transfer modelling
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Figure 10. Profiles of uv versus vθ . (a) x/d =5 (b) x/d = 35 (dashed line) and 65 (solid line).

point of view. Figure 10, which shows plots of uv as function of vθ for x/d =5d , 35d

and 65d , indicates that while this is not quite exact (a perfect proportionality between
uv and vθ would be indicated by a straight line passing through (0, 0)), one may, as
a first-order approximation, assume that uv = Cθvθ with the constant Cθ equal to the
slope of a straight line representing the principal axis of the closed curve C(uv, vθ).
Note that, since the slope of this axis changes with x/d , Cθ would have to be a
function of x/d .

Overall, uv and vθ are of opposite sign to dU/dy and dΘ/dy, respectively, across
the wake. For some x/d locations though (e.g. 9 and 11) this is not true. At these
positions, uv has the same sign as dU/dy in the central region of the wake. Similar
observations can be made for vθ and dΘ/dy. Also at x/d =25, one can see that
sign(uv) = sign(dU/dy) in the region 1 � |y/d| � 3. The fact that sign(uv) =
−sign(dU/dy) and sign(vθ ) = −sign(dΘ/dy) in most part of the wake is consistent
with a GTM for uv and vθ . However, this is only approximately confirmed by the
data as seen in figures 11 and 12, where uv and vθ at the downstream locations of
x/d = 5, 35 and 65 are plotted as functions of dU/dy and dΘ/dy, respectively. In
these representations, quadrants 1 and 3 correspond to GTMs, uv = −νt × (dU/dy)
and vθ = −νt,α × (dΘ/dy), where νt and νt,α are the turbulent viscosity and turbulent
thermal diffusivities. GTMs would be observed across the wake if the data collapsed
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Figure 11. Profiles of −uv versus dU/dy. (a) x/d = 5 (b) x/d = 35 (dashed line) and 65
(solid line).

into single curves; constant νt and νt,α would be indicated by straight lines passing
through the point (0, 0). Notice that the magnitudes of uv and vθ are reduced by a
factor 10 between the positions x/d =5 and 35, which is why the data for x/d =5
have been plotted separately. The shape of the curves (inclined 8-shaped) formed by
the data unambiguously demonstrates that neither uv nor vθ can be strictly modelled
by a GTM throughout the entire wake. Yet, it would be relatively appropriate to
argue that the data tend to gather around straight lines passing through the point
(0, 0). The rather thin elongated shape of the curves in figure 11 suggests that a GTM
may, to a first-order approximation, be used to model uv. In particular, one section
of the curve at x/d = 65 does present a straight line in the region corresponding
to −0.08 < dU/dy < 0.08. The region of the wake to which this straight line section
corresponds is the central part of the wake (−2 � y/d � 2), implying that a GTM
is valid in this region. While data of figure 12 may allow a GTM to be used to
model vθ for x/d = 65, it would certainly be less accurate than that for uv, as the
8-shaped curves are less elongated than those of figure 11. Whether the curves in
these figures would approach a straight line, at least in the central part of the wake,
for x/d extending beyond 65 remains to be determined. One needs to extent the
present simulations to include the far wake region in order to provide a conclusive
statement. Quite interestingly, some parts of the curves in both figures are located
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Figure 12. Profiles of −vθ versus dΘ/dy. (a) x/d = 5 (b) x/d = 35 (dashed line) and 65
(solid line).

in the second (figure 11, x/d = 5) and fourth (figure 11, x/d = 35; figure 12, x/d = 5)
quadrants, which corroborates the earlier observations on the signs of uv, vθ, dU/dy

and dΘ/dy. Paranthoën et al. (2004) and Godard et al. (2005) also found that some
of their data vθ were located in the second and fourth quadrants. The ‘excursions’ of
data in these quadrants reveal that counter-gradients occur only in localized regions
of the present flow. While the cause of the occurences of these counter-gradients is
not known yet, one may argue that they may be related to the orientation and/or
locations of the intantaneous vortices within the wake. Indeed, it can be seen in figures
4 and 5 that the spatial arrangment of the (spanwise) vortices changes significantly
in the region x/d � 40, where counter-gradients are observed in this region of the
wake. The vortices are initially aligned with the centreline of the wake before moving
radially away from it as x/d increases beyond 35. A Similar argument can be made
for the sign of vθ , although no counter-gradient is observed for x/d � 30.

The seemingly resemblance between figures 11 and 12 could suggest a possible
analogy between the momentum and heat transports. To assess this possibility, the
turbulent Prandtl number, Prt = νt/νt,α , was calculated and is shown in figure 13 for
x/d = 5, 35 and 65. No data smoothing has been done; notice the discontinuity
at y/d = 0 due to the zero gradients there. A constant Prt with a value of 1
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Figure 13. Profiles of the turbulent Prandtl number, Prt at x/d = 5 (open squares), 35
(crosses) and 65 (solid squares).

would indicate a Reynolds analogy between uv and vθ across the wake. Clearly,
no such result is observed. Not only Prt is not equal to one, but its behaviour differs
significantly between the position x/d = 5 and the other two, highlighting variations
in the momentum and heat transports between the near-wake and the intermediate
wake regions. In general, the momentum appears to be more effectively transported in
the very near-field region of the wake, which is indicated by the relatively high values
of Prt at x/d = 5. As the downstream distance increases behind the cylinder, heat
becomes more effectively transported than momentum as reflected in the small values
of Prt for x/d = 35 and 65. Furthemore, at these distances the transport of heat is more
effective in the central region of the wake than in the outer regions, although the data
indicate that the effectiveness decreases as the distance x/d increases. There appears
to be a region of about 25d to 35d where heat is most effectively transported. Godard
et al. (2005) also noted that heat was more efficiently transported than momentum.
Antonia, Zhou & Matsumura (1993) found that Prt was about 1 at x/d =10, but
substantially less than one in the central region of the wake for x/d > 20.

3.4. Topology of the fluctuating velocity and temperature fields

Figures 14 shows examples of isocontours of the three components of the fluctuating
velocity and the temperature fluctuation in the region 0 � x/d � 30. Clearly,
all fluctuating components are organized into well-defined coherent structures of
relatively large scales, with similarities between them. The u and v structures are both
organized into transverse rolls, while w is formed into mainly braid-like structures
and a few discontinuous rolls. The θ structures present a mixture of rolls and braids.
Notice though that the θ field bears more similarity with w than u and v. This is
confirmed in figures 15 and 16 which shows instantaneous isocontours of the velocity
and temperature fluctuations in the x–y plane at z/d = 0. Despite the difference
in the spatial organization, the contours of θ present a relatively good level of
correspondance with the w contours throughout the wake. Interestingly, while the
correspondance of contours between u and v is weak, that between v and w and,
consequently, θ is better at large x (figure 16) than closer to the cylinder (figure 15).
Note though the non-staggered arrangement of the v structures as compared to the
others.
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Figure 14. Instantaneous isocontours of u/U0 = ± 0.15 (a), v/U0 = ± 0.25 (b),
w/U0 = ± 0.08 (c) and θ/(Tw − T0) = ± 0.02 (d ) in the region 0 � x/d � 30.
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Figure 15. Instantaneous isocontours of u (a), v (b), w (c) and θ (d ) in the x–y plane at
z/d = 0 and in the region 0 � x/d � 30. Solid lines: positive contours, dashed lines: negative
contours.

The fluctuating velocity structures reflect the contributions of the fluctuating
vorticity components, ωx , ωy and ωz, to the velocity field (figure 17). For example,
comparing figures 14 and 17 clearly shows that both ωx and ωy , which are organized
into braids, are the main contributors to the spanwise fluctuating velocity. Likewise,
the very strong contribution of ωz to both u and v is observed in the fact that these
three components are organized into similar structures. It was found that ωz was
larger than ωx which in turn was bigger than ωy . This then explains why v is larger
than u and w (see figure 6): it receives contributions from ωz and ωx , the two largest
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Figure 16. Instantaneous isocontours of u (a), v (b), w (c) and θ (d ) in the x–y plane at
z/d = 0 and in the region 30 � x/d � 60. Solid lines: positive contours, dashed lines: negative
contours.
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Figure 17. Instantaneous isocontours of ωx/ωx,max = −0.05 (a), ωy/ωy,max = −0.05
(b) and ωz/ωz,max = −0.05 (c) in the region 0 � x/d � 30.

fluctuating vorticity components. The component u which is larger than w, receives
contributions from ωz and ωy .

After the initial stage of the shedding, the velocity and thermal structures tend to
align along the wake centreline in the region 10 � x � 35 before moving away from
it in the region x � 40. This is particularly evident for v and θ . This indicates that
the fluctuating velocity field affects quite strongly the fluctuating temperature field,
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Figure 18. Instantaneous isocontours of q2 (a) and θ2 (b) at y/d = 0 in the region
0 � x/d � 30.
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Figure 19. Instantaneous isocontours of q2 (a) and θ2 (b) at y/d = 0 in the region
30 � x/d � 60.

which in turn would imply that the sum of u, v and w could bear some analogy
with θ . To assess this point, contours of the fluctuating turbulent kinetic energy,
q2(= 0.5(u2 + v2 + w2)), and θ2 in the x–z plane at y/d = 0 are presented in figures 18
and 19. There is a remarkably good correspondence between the isocontours of θ2

and q2 throughout the entire wake. It should be reported, though, that the thermal
structures present sharper edges than the q2 structures (this is well seen in a xy

view, not shown here). Antonia, Abe & Kawamura (2009) also reported very good
similarity between θ2, q2 and u2 isocontours in the near-wall region of a turbulent
channel flow with one heated wall. Their data also show sharper edges for θ2 than
u2. These authors argue that this feature is likely to reflect the fact that the scalar is
less mixed than u.

A final and quite interesting point to note and comment on is the locations of θmax ,
the maxima of θ in figures 15 and 16. These locations correspond to the locations of
very strong velocity gradients. This is very well seen in figure 20 where the positive
θmax have been superposed onto the isocontours of the velocity components in the
region 30 � x/d � 60 (similar evidence is observed in the region 0 � x/d � 30).
The maxima appear to be located where the fluctuating velocity contours are most
compressed, that is at locations of high velocity gradients (a similar correspondence
with the w contours, not shown here, is also observed). Notice the almost perfect
correspondence between the positive θmax locations and the interfaces between positive
and negative v isocontours. These results suggest a possible relation between the
temperature fluctuation gradients, ∂θ/∂xi , and ωxi

or at least ∂ui/∂xi . This would
be consistent with the observation made in a heated turbulent channel flow (Abe,
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Figure 20. Instantaneous isocontours of u (a), v (b), with superposed local maxima of
positive θ (black points) in the x–y plane at z/d = 0 and in the region 30 � x/d � 60.

Antonia & Kawamura 2009) that ∂θ/∂xi are interlinked with ωxi
. Also of relevance

to the present results is that Godard (2001) observed that ∂θ/∂xi tends to be aligned
with the principal compressive (negative) strain rate directions.

4. Conclusions
The momentum and heat transport of a three-dimensional transitional wake of a

heated square cylinder has been investigated using DNS based on the LBM. The
simulations were run for a Reynolds number of about 200 and a Prandtl number of
0.7. The spatial resolution was considered adequate for capturing the salient features
of the transitional flow relevant to the transport of momentum and heat.

It was found that while momentum and heat were transported by vortical structures,
heat was more effectively transported than momentum, except close to the cylinder
(5 � x/d) where the reverse occurred. This explained why the Reynolds analogy
between uv and vθ was not observed in this flow. Furthermore, the heat flux uθ was
larger than vθ in the region 5 � x/d � 45. This unexpected feature was thought to be
associated with the structural nature of the transitional flow. A possible explanation
is that the strongly coherent vortical structures (roll and braids) particular to this
flow in this region of the wake contribute more to uθ than vθ .

Although uv and vθ were respectively of opposite sign to dU/dy and dΘ/dy which
is consistent with a GTM, the data analysis showed that the GTM can only be a first
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order approximation, the approximation being better for uv than vθ . It should be
pointed out though that counter-gradients were observed in localized regions, which
excludes any possible use of GTM in these regions.

The analysis of the topology of the fluctuating fields showed that the fluctuating
temperature field presented thermal structures similar to the velocity structures with,
however, a different spatial organization. Futhermore, a relatively good correlation
between the q2 and θ2 fields was observed, implying an analogy between these two
quantities.

Finally, the data showed that the local maxima of θ coincided with the
maxima of fluctuating velocity gradients, hinting to a possible relationship between
temperature gradients and vorticity and/or velocity gradients. This issue needs further
investigation.
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